欢迎访问福州手机怎么挂梯子科技有限公司官网

高熵合金(高熵材料)四大效应定量化计算和图像化表征-线上&线下实战研修班热招中

栏目:专业软件培训 发布时间:2023-02-20 浏览量: 123
高熵合金(高熵材料)四大效应定量化计算和图像化表征-线上&线下实战研修班热招中

时间Date:
春季班:3月27-30日;寒假班1月8-14日
初夏班:5月7-10日;暑期班:7月16-21日;秋季班:11月1-4日;)
(一次注册,长期线上保驾护航,直至论文发表),
方式Way:线上线下同步讲课,云计算展播、训练和QQ远程协助相结合

Quantitative calculation and graphical characterization of four Core effects of high entropy alloy (high entropy materials) based on atomic site preference

(General Flyer) 

时间Date(按需开展线上/线下教学,早学早用,人数不限少)

春季班:327-30日;寒假班18-14

初夏班:57-10;暑期班:716-21;秋季班:111-4;

(一次注册,长期线上保驾护航,直至论文发表),

方式Way:线上线下同步讲课,云计算展播、训练和QQ远程协助相结合(Combination of online course,cloud computing demonstration, training and remote personal assistance)                                

主办:福州大学多尺度材料设计与应用实验室 http://mcmf.fzu.edu.cn

承办:福州手机怎么挂梯子科技有限公司         www.bode-tech.cn

协办:北京并行科技有限公司 (助您分分钟驶入计算快车道,24小时在线贴身保驾护航,点击试用

Host: Multi-scale Computational Material Facility, School of Materials, Fuzhou University

Co-organized: Fuzhou Bode Advanced Material Co., Ltd.   Beijing Parallel Technology Co., Ltd.

注册费:寒假班,暑假班3000/(500元机时费,如学员负责自己的超算资源,则注册费2500)

Registration fee: 600$ for DEVELOPED country register (save 100$ if using own supercomputer resource)

春季班;初夏班;秋季班;2500/(500元机时费,如学员负责自己的超算资源,则注册费2000)

高熵合金(高熵材料)外网npv加速器专题培训咨询QQ: 183881047

吴波教授:QQ:654489521@qq.com,电话:13023819517 首席教学和科研负责人

吴睿先生:QQ:495502272@qq.com,电话:13691685245 博德科技行政副总

Teacher’s skype ID: drwubo@hotmail.com

 

1.达成目标

基于晶体结构模型构筑合金热力学模型,结合相平衡和第一性原理计算,完成各种结构的高熵合金(高熵材料)(单相为主)四大效应的定量化和图像化表征。

计算零基础学员,完成一个自己选定的高熵合金(高熵材料)体系,对其结构和性质进行全流程定量化和图像化表达,包含自主建模、热力学数据库构建、占位分数计算、基于占位分数的原子分布模型构建、短程有序或局域有序化团簇, 点阵常数、晶格畸变驱动力及畸变率, 弹性各向异性力学性质、韧脆性、间隙原子扩散、初步了解高熵合金(高熵材料)的催化特性建模和计算分析之定量化和图像化表达。没出论文初稿,不准走人包教包会,长期在线辅导,疫情平稳后,欢迎到福州江景SOHO现场作文,或吴波教授受邀到贵单位走访辅导)

1. Achieve your goals

Based on crystal structure model,building alloy thermodynamics, by combing computational thermodynamics and first-principles calculations, the four core effects of high entropy alloys with various structures (single phase) were quantitatively and graphically characterized.

Students practice a self-selected high entropy alloy, achieve independent modeling, thermodynamic database construction, site occupying fractions calculation, atomic distribution model construction based on site occupying fractions, short range ordering(SRO) or local ordering, diverse mechanical property calculation, interstitial atom diffusion, and preliminary understanding of catalytic characteristic modeling and calculation analysis of high entropy alloy. (Online consult and help are available till well grasping)

预报名表接收邮箱info@bode-tech.cn, fzu_mcmf1@sina.com, wubo@fzu.edu.cn

Register Form please Email to info@bode-tech.cn, fzu_mcmf1@sina.com, and wubo@fzu.edu.cn 


会务助理Consult for training service:吴睿 先生 13691685245(微信)

课堂入口信息:开课前发送内部授课资料和腾讯会议登录信息到报名邮箱

Classroom entrance information: The teaching materials and Tencent conference login information will be emailed to the registration mailbox before the class starts

备注原则上应自备VASP\PHONOPY\热力学软件版权或申请试用版,或以适当方式合作

Remarks: In principle, you should bring your own VASP\ PHONOPY\ thermodynamic software copyright or apply for a trial versionor cooperation properly

2.需求分析

高熵合金(高熵材料)是一种划时代的材料设计理念,不少材料具有一种或多种潜在的优异性能,由此也启发人们提出了各种各样高熵材料新概念,频频艳羡于《Nature&Science》,此乃高熵合金幸事和盛世。与此同时,高熵合金(高熵材料)存在很多争议,甚至连高熵合金这个名字都被不少有识之士避而不谈。广为人知的高熵合金(高熵材料)的四大效应(热力学上的高熵效应,动力学上的迟滞扩散效应,结构上的晶格畸变效应,性能上的鸡尾酒效应),也不时受到质疑,因为随便一种效应,都很容易被人举出反例而显得尴尬,说明高熵合金(高熵材料)的合金化理论研究(结构与性能的关系)还很不充分。另一方面,合金成分组合海量,如何钓到大鱼,烧钱式广泛撒网并不可取,也不可能。与其临渊羡鱼,不如退而结网,把基础方法搞通再出海。基于材料基因工程理念,运用高通量实验,尤其是借助高通量计算,积累海量数据后辅助以机器学习的AI材料设计是必由之路。

考虑到组成高熵合金(高熵材料)的原子种类众多,各种组成原子结构和性质各异,FCCBCCHCP也呈现出迥异的晶体结构,因此,原子在亚晶格和整体晶格上必然存在择优占位行为(占位有序化行为,site preference),而基于传统的随机固溶体模型方法的SQSCPA-EMTO似乎不能描述真实合金体系的结构特性,既抹杀了组成原子种类差异,也抹杀了合金相结构差异,并且还忽略了热处理温度的影响S=Rln(n)描述构型熵,这只代表了实际并不存在的那种最理想的原子排布模式。因此,将复杂的高熵合金(高熵材料)简单化描述,感觉不一定站得住脚。高熵合金(高熵材料)研究开发已发展到新阶段,有必要也有可能进行理性化描述。

基于以上理性思考和实践,吴波等人经过多年前期探索,创新性地建立了一系列定量化和图像化描述高熵合金(高熵材料)的四大效应的理性方法,系列方法论学术论文和专利发表后,引起同行较大关注,收到不少热情鼓励和诚恳建议,也收到不少的学习咨询,期望提供学习和外网npv加速器实战机会。新冠疫情复杂多变期间,高熵材料发展不停步,学术论文仍一日见刊10篇以上,不乏N&S 大刊。研究者对该领域的新方法和新想法必须密切跟进,才能有高质量的科研成果。因此,本系列培训应需而为,以期为同行提供一些理性思路和新方法。

2. Requirements analysis

High entropy alloy is an epoch-making alloy design concept. Many alloys may have one or more potential excellent properties, which also inspires people to put forward various new concepts of high entropy materials. High impact papers are emerging every day, even highlighted in Natureand Science, thus it is a Booming Times of HEAs. However, there are many controversies about high entropy alloy, and even the name of high entropy alloy has been avoided by many people of insight. The four well-known effects of high entropy alloy (high entropy effect in thermodynamics, sluggish diffusion effect in kinetics, sever lattice distortion effect in structure and cocktail effect in performance), It is also questioned from time to time, because any kind of effect is easy to be cited as a counterexample, which shows that the alloying theory research (the relationship between structure and properties) of high entropy alloys is still insufficient. On the other hand, there are a large number of alloy compositions, so it is neither advisable nor possible to catch big fish and burn money to cast a net widely. It is wisdom to find a reasonable reliable and general simulation approach at first. Artificial Intelligent Materials Design (AI-MD) is the future way based on the concept of material genetic engineering, by employing high-throughput experiments, especially high-throughput calculations, assisting machine learning after accumulating massive data.

Considering that there are many kinds of atoms that make up high entropy alloys, different kinds of constituent atoms have different structures and properties, FCC, BCC and HCP also show different crystal structures, Therefore, atoms must have preferred site preference on sublattice and global lattice. However, SQS and CPA-EMTO based on the traditional random solid solution model method can't describe the structural characteristics of real alloy system. They not only ignore the differences of composition atoms, but also ignore the differences of alloy phase structure, and even ignore the effect of heat treatment temperature on the site preference, thus S=Rln (n) is used to describe the configuration entropy, which only represents the most ideal atomic arrangement mode that does not exist in practice. Therefore, it may not be tenable to simplify the description of complex high entropy alloys. The research and development of high entropy alloys has developed to a new stage, so it is necessary and possible to describe them rationally.

Based on the above rational thinking and practice, Prof. Dr. Wu Bo and others colleagues put forward a series of methods to describe the four effects of high entropy alloy quantitatively and graphically after many years of early exploration. After the publication of a series of methodological academic papers and patents, they attracted great attention from peers and received many peer comments and consultations, expecting to provide sharing and teaching opportunities. There are still 10 complex and high-entropy academic papers in COVID-19 pandemic every day, including published in Nature and Science. Thus, new methods and ideas in this field must be closely followed up in order to have high-quality scientific research results. Therefore, this series of training should be needed to provide some new ideas and methods for peers.

3.课程之学术思想及讲授提纲(讲课和上机实践安排表细化后公布)

高熵合金(高熵材料)理论研究进展述评  高熵合金(高熵材料)外网npv加速器方法述评

第一性原理计算方法快速入门   计算热力学与相平衡快速入门

高熵合金(高熵材料)有序化结构建模,高熵合金(高熵材料)合金热力学描述

端基热力学数据库构筑,相比例、相成分、占位分数计算

基于占位分数的原子分布模型搭建

平衡态下局域有序结构定量化和图像化表征

晶格畸变驱动力及晶格畸变率定量化和图像化表征

高熵合金(高熵材料)电子结构分析

高熵合金(高熵材料)基态高温力学性能预测

间隙原子扩散能垒波、扩散常数、扩散系数计算

高熵合金(高熵材料)表面能,表面吸附

高熵合金(高熵材料)催化建模、计算与分析初步

 

Fig. 3-1. Academic innovative and research flow chart of complex alloy phase with site occupying fractions.

 

3. Schedule of course teaching, modeling and computer calculation

(1) Review on the theoretical research progress of high entropy alloys

(2) A quick start to First-principles computing methods

(3) A Quick start to computational thermodynamics and phase equilibrium

(4) Description of calculation and simulation methods for high entropy alloys

(5) Ordered structure modeling of high entropy alloys high entropy materials

(6) Thermodynamic description of high entropy alloyhigh entropy materials

(7) Construction of end-based thermodynamic database of high entropy alloys high entropy materials

(8) Calculation of phase proportion, phase composition and occupying fraction

(9) Establishment of atomic distribution model based on occupying fraction

(10)  Quantification and image characterization of Local ordered structures in equilibrium state

(11)  Electronic structure analysis of high entropy alloyhigh entropy materials

(12)  Prediction of mechanical properties of high entropy alloyshigh entropy materials

(13)  Calculation of diffusion energy barrier wave, diffusion constant and diffusion coefficient of interstitial atoms

(14)  Surface energy, surface adsorption of high entropy alloyhigh entropy materials

(15)  Preliminary modeling, calculation and analysis of high entropy alloy catalysis